A P300 BCI for the Masses: Prior Information Enables Instant Unsupervised Spelling
نویسندگان
چکیده
The usability of Brain Computer Interfaces (BCI) based on the P300 speller is severely hindered by the need for long training times and many repetitions of the same stimulus. In this contribution we introduce a set of unsupervised hierarchical probabilistic models that tackle both problems simultaneously by incorporating prior knowledge from two sources: information from other training subjects (through transfer learning) and information about the words being spelled (through language models). We show, that due to this prior knowledge, the performance of the unsupervised models parallels and in some cases even surpasses that of supervised models, while eliminating the tedious training session.
منابع مشابه
Experimental Set Up of P300 Based Brain Computer Interface Using a Bioamplifier and BCI2000 System for Patients with Spinal Cord Injury
OBJECTIVE Brain computer interface (BCI) is one of the most promising technologies for helping people with neurological disorders. Most current BCI systems are relatively expensive and difficult to set up. Therefore, we developed a P300-based BCI system with a cheap bioamplifier and open source software. The purpose of this study was to describe the setup process of the system and preliminary e...
متن کاملEEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis.
The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean...
متن کاملIntegrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
OBJECTIVE Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure s...
متن کاملExtraction de potentiels évoqués P300 pour les interfaces cerveau-machine
Brain-computer interfaces (BCI) enable non-muscular powerful channel for communicating thanks to direct communication between the user’s brain and a computer. In this article, the presented BCI concerns the P300 speller which enables people to write a text on a computer by estimating P300 evoked potentials. In this work, an unsupervised algorithm is introduced for signal subspace estimation: th...
متن کاملPrediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
OBJECTIVE Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012